跳转至内容
Merck
CN
  • SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice.

SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice.

Oncotarget (2014-12-30)
Salvatore Delogu, Chunmei Wang, Antonio Cigliano, Kirsten Utpatel, Marcella Sini, Thomas Longerich, Nina Waldburger, Kai Breuhahn, Lijie Jiang, Silvia Ribback, Frank Dombrowski, Matthias Evert, Xin Chen, Diego F Calvisi
摘要

Mounting evidence indicates that S-Phase Kinase-Associated Protein 2 (SKP2) is overexpressed in human hepatocellular carcinoma (HCC). However, the role of SKP2 in hepatocarcinogenesis remains poorly delineated. To elucidate the function(s) of SKP2 in HCC, we stably overexpressed the SKP2 gene in the mouse liver, either alone or in combination with activated forms of N-Ras (N-RasV12), AKT1 (myr-AKT1), or β-catenin (ΔN90-β-catenin) protooncogenes, via hydrodynamic gene delivery. We found that forced overexpression of SKP2, N-RasV12 or ΔN90-β-catenin alone as well as co-expression of SKP2 and ΔN90-β-catenin did not induce liver tumor development. Overexpression of myr-AKT1 alone led to liver tumor development after long latency. In contrast, co-expression of SKP2 with N-RasV12 or myr-AKT1 resulted in early development of multiple hepatocellular tumors in all SKP2/N-RasV12 and SKP2/myr-AKT1 mice. At the molecular level, preneoplastic and neoplastic liver lesions from SKP2/N-RasV12 and SKP2/myr-AKT1 mice exhibited a strong induction of AKT/mTOR and Ras/MAPK pathways. Noticeably, the tumor suppressor proteins whose levels have been shown to be downregulated by SKP2-dependent degradation in various tumor types, including p27, p57, Dusp1, and Rassf1A were not decreased in liver lesions from SKP2/N-RasV12 and SKP2/myr-AKT1 mice. In human HCC specimens, nuclear translocation of SKP2 was associated with activation of the AKT/mTOR and Ras/MAPK pathways, but not with β-catenin mutation or activation. Altogether, the present data indicate that SKP2 cooperates with N-Ras and AKT proto-oncogenes to promote hepatocarcinogenesis in vivo.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
甘油, ACS reagent, ≥99.5%
Sigma-Aldrich
甘油, Molecular Biology, ≥99.0%
Sigma-Aldrich
甘油, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, 20% in H2O
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, pH 8.0, ~0.5 M in H2O
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
甘油, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Supelco
甘油, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
甘油, BioXtra, ≥99% (GC)
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)