Merck
CN
  • A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity.

A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity.

Molecular pharmacology (2015-09-26)
Rui Xiong, Wenbo Zhou, David Siegel, Russell R A Kitson, Curt R Freed, Christopher J Moody, David Ross
摘要

A potential cause of neurodegenerative diseases, including Parkinson's disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein.

材料
货号
品牌
产品描述

Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
脱氧胆酸钠, ≥97% (titration)
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
腺苷 5'-三磷酸 二钠盐 水合物, Grade I, ≥99%, from microbial
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
DL-二硫代苏糖醇 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Supelco
DL-二硫代苏糖醇 溶液, 1 M in H2O
Sigma-Aldrich
毛地黄皂苷, Used as non-ionic detergent
Sigma-Aldrich
腺苷 5'-三磷酸 二钠盐 水合物, BioXtra, ≥99% (HPLC), from microbial
Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-15, ascites fluid
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
脱氧胆酸钠, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
腺苷 5'-三磷酸 二钠盐 水合物, microbial, BioReagent, suitable for cell culture, ≥99% (HPLC)
Sigma-Aldrich
十二烷基硫酸钠, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
十二烷基硫酸钠, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
SAFC
脱氧胆酸钠
Sigma-Aldrich
腺苷 5'-三磷酸 二钠盐 水合物, 99%
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
苯甲磺酰氟, ≥99.0% (T)
Sigma-Aldrich
十二烷基硫酸钠, ≥90% ((Assay))
Sigma-Aldrich
毛地黄皂苷, ~50% (TLC)
Sigma-Aldrich
腺苷 5'-三磷酸 二钠盐 水合物, Grade II, ≥97% (HPLC), crystalline, from microbial
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
腺苷 5′-三磷酸腺苷 (ATP) 二钠盐 水合物, vial of 30 mg
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, ≥97.5% (HPLC)
Sigma-Aldrich
腺苷 5′-三磷酸腺苷 (ATP) 二钠盐 水合物, vial of ~1 mg ATP